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A model describing paramagnetic enhanced proton relaxation (PER) in low-symm-
etry complexes is developed. The theoretical framework valid in the slow-motion
region for the electron spin system is reviewed and related to the Solomon-Bloem-
bergen-Morgan theory. The dynamic model of a low-symmetry paramagnetic com-
plex comprises a static and a transient ZFS interaction. Calculations of NMRD
dispersion curves are presented for complexes of paramagnetic ions with electron
spin quantum number S = 1. The dipole—dipole cross-correlation functions are shown
to play an important role in the low-field region where the ZFS interaction is larger
than the Zeeman interaction. The calculations of dispersion curves cover the range
from the Redfield region to the slow-motion region and are compared with analogous
results obtained using the Bloembergen-Morgan approach. The results indicate that
an appropriate model for many low-symmetry complexes must include a model
similar to the restricted pseudo-rotation of the principal frame of the ZFS interaction
in order to average the electron spin — nuclear spin dipole—dipole coupling, implying a
low and constant PER effect in the low-field region. This fact may explain the partial
success of fitting the Bloembergen-Morgan expressions to the experimental dis-
persion curves for low-symmetry complexes.

Introduction

Nuclear spin relaxation times in diamagnetic liquids are
often reduced markedly when small concentrations of some
paramagnetic species are added. This effect is usually called
paramagnetic enhanced relaxation (PER). The interpreta-
tion of PER is usually based on the Solomon-Bloember-
gen-Morgan (SBM) theory'™ or low-field approaches with
similar assumptions as in the SBM theory.>” The SBM
theory incorporates the effect of the electron spin relaxa-
tion on the nuclear spin relaxation of octahedral (high-
symmetry) complexes. In biological systems, on the other
hand, a paramagnetic hexaaqua complex [M(H,0)|"* is
expected to become permanently distorted owing to the
perturbation of the charged interfaces of the macromole-
cules, or the bilayer, and the solvent. Some of the water in
the first hydration shell may be replaced by other ligands or
be subject to hindered motion. The result of such a pertur-
bation is a low-symmetry environment of the paramagnetic
ion when averaged over the local motions of the surround-
ing molecules, and which is manifested in a static ZFS
interaction. Consequently the PER effect in a heterogene-
ous system, where the paramagnetic ion is located in a
low-symmetry environment, may be quite different and is
not taken into account in the SBM theory. Thus, for an
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important class of systems, i.e. for all heterogeneous sys-
tems where the electron spin relaxation rate is relevant, the
PER effect is not theoretically well-described.

The SBM relaxation description is condensed into a set
of equations describing the relaxation rates of the nuclear
spin (I = 1/2) when coupled via nuclear spin - electron spin
dipole—dipole interaction and scalar interaction to an elec-
tron spin S [eqns. (1) and (2)]. In this set, interaction
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constants for the dipole—dipole and the scalar interaction
are given by eqns. (3a) and (3b). The first term in both
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equations arises from the nuclear spin - electron spin di-
pole—dipole interaction (DD) and is characterized by the
correlation times ¢, and t.,. The second term arises from
the scalar interaction (SC) and is characterized by the cor-
relation times T, and tg.. The correlation times are defined
by eqn. (4). The electron spin relaxation times t,q and Ty
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are determined within the Redfield theory and given by
eqns. (5) and (6), where A refers to the transient ZFS
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interaction. The molecular reorientational modulation of
the dipole—dipole interaction is characterized by the corre-
lation time t, and the modulation of the transient ZFS
interaction is characterized by t,. The correlation time Ty,
refers to the lifetime of the diamagnetic nuclei in the com-
plex.

The application of the SBM theory is restricted to elec-
tron spin systems weakly coupled to the lattice and to the
extreme narrowing condition for the electron spin system.
The latter restriction is removed by the generalization to
multi-cxponential electron spin relaxation given by Luz et
al.® Furthermore, the BM approach assumes that the nucle-
ar and the electron spin systems are uncorrelated. This is
only strictly true for octahedral complexes with relatively
fast fluctuations compared with the molecular reorienta-
tion. However, for paramagnetic complexes with perma-
nently low symmetry the ZFS interaction is also modulated
by the molecular reorientational motion, together with the
local, and often faster, symmetry-distorting motion of the
ligands. The former dynamics is thus the same motion that
modulates the electron—nuclear dipole—dipole coupling,
and it has been shown that the correlation between the ZFS
interaction and the dipole—dipole coupling may necessitate
a large correction of the SBM description for nuclear Ty,.°
Consequently, the nuclear spin — electron spin dipole—di-
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pole correlation function is not separable into an electron
spin correlation function and a pure reorientational corre-
lation function.

We follow the theoretical framework developed in a
number of papers,”'” applied to other types of systems,
however. In Refs. 9 and 11-13 the paramagnetic system
treated refers to the low-symmetric and rigid complexes
with a ZFS interaction only modulated by molecular reo-
rientation. In Refs. 10 and 14 we applied the theoretical
framework to the other extreme, namely to octahedral
complexes where only a transient and fast fluctuating ZFS
interaction was present. In this paper we combine the two
extreme cases into a model which comprises both a static
and a transient ZFS interaction. We have confined the
treatment to electron spin systems with spin quantum num-
ber =1 and to a specific dynamic model for the local
symmetry-disrupting motion described as a low-frequency
classical vibrational mode. This model is the classical ana-
logue to the quantum-mechanical vibration model dis-
cussed in Ref. 18. The local symmetry-distorting motion is
described by a Smoluchowski model," and the molecular
reorientation is described as an isotropic rotational diffu-
sion motion. We focus on the cross-correlation effects and
compare our results with the corresponding Bloembergen-
Morgan results.

For the weak coupling, as for the slow-motion regime,
we must rely on numerical results, which are presented in
the form of NMRD dispersion curves showing how the
nuclear spin-lattice relaxation rate T,,, varies with the
static magnetic field B,,. This paper is organized as follows.
In section 2 we review the fundamentals of the theoretical
framework, and in section 3 the lattice model is described.
The numerical results are then discussed, and in section 5
we summarize the results and conclusions of this work.

Nuclear spin relaxation theory

For nuclear spins (/) in a paramagnetic complex, the
coupling to the lattice is predominantly via the interaction
with the electron spin system. The interaction between a
nuclear spin and an electron spin arises from electron spin —
nuclear spin dipole—dipole coupling (HP") and Fermi con-
tact scalar interaction (H5¢). In this paper we concentrate
on the former mechanism since it is, in most cases, the
dominant relaxation path for the nuclear spin system. The
spin dipole—dipole interaction depends on the magnitudes
of the nuclear and electron spins and on the separation and
relative orientation of the spins. The ‘lattice’ (L) refers to
the electron spin system (S) and other relevant degrees
of freedom, e.g. the distortion motion of the complex
symmetry and the molecular tumbling motion. The equa-
tion of motion is given by eqn. (7).

d
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Following the formalism,’"” the analogous expressions to
eqns. (1) and (2) describing the nuclear spin-lattice relaxa-
tion rate within the Redfield theory are given by eqn. (8).
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The expressions now also include an additional term,
representing a cross-correlation effect between the scalar
and the dipole—dipole interactions, which is not very impor-
tant and is not discussed further in this paper. The complex
spectral density K, _, is defined as the Fourier-Laplace
transform of the correlation function G(¢). The dipole-
dipole correlation function is given by eqn. (9).
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The nuclear spin-lattice relaxation rate is thus given in
terms of the Fourier-Laplace transform of the dipole-
dipole correlation function. The nuclear spin — electron
spin dipole—dipole interaction hamiltonian is most con-
veniently written in terms of first-rank irreducible tensor
operators [eqn. (9)], where the lattice tensor operator T}

Hy= > (-1 LT, ©9)

representing the dipole—dipole interaction is defined by
eqn. (10), and for the scalar interaction we have eqn. (11).

Ti() = (1) 3" > (G, ) L) SIF,[Q()] (10)
q
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In eqn. (10) we have a 3—j symbol; S, is a first-rank
standard electron-spin vector operator, and F,_, is a
stochastic time-dependent rank-two tensor function con-
taining the geometry-dependent part of the spin dipole-
dipole interaction. It is related to the second-rank Wigner
matrix elements through eqn. (12).

1
F_[Q0] = —(10)2ysy, ) D§ - ,[Q(1)] (12)

Substituting eqns. (10) and (12) into the dipole—dipole
correlation function results in eqn. (13) for the dipole-
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dipole correlation function, and for the scalar time correla-
tion function we obtain eqn. (14).

GC (1) = Atr [(—)"SL, € S, 0] (14)

In order to determine the nuclear spin relaxation rate,
the Fourier—Laplace transform of the correlation functions
of egns. (13) and (14) must be determined. In the next
section we turn our attention to this problem, and first we
define the Liouville lattice superoperator governing the
dynamics of the correlation function.

The lattice degrees of freedom

The Liouville lattice superoperator may be written as a sum
of the following Liouville superoperators [eqn. (15)]. L is

LL = L%eeman + LZFS + qu + lFQ (15)

generated by the electron Zeeman interaction Hg = g¢B,S,.
L, is generated by the ZFS interaction specifying the
coupling between the electron spin system, the stochastic
time-dependent distortion coordinate and the reorienta-
tional degrees of freedom [eqn. (16)], where g, is the

Hyes(t) = 3, (=1)'S?
X > a@(t) D}, [Qem(D)] D2, [Qu(1)] (16)

principal component of the ZFS interaction assuming a
cylindrical symmetry of the interaction. In order to relate it
to the classical subsystem, the principal component is
expanded in terms of a coordinate g(¢) [eqn. (17)]. The
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permanent ZFS interaction [eqn. (18)] refers to the first
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term of eqn. (17), which is only modulated by the molec-
ular reorientational motion. The transient ZFS interaction
due to the linear term is given by eqn. (19), and the root
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mean-square value of the ZFS interaction is defined by
eqn. (20).

2)\ 2 11
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dq K
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In eqns. (18) and (19) we have also indicated with the bar
an average over the motion of the principal frame of the
ZFS relative to the reorientational diffusion frame. We
then introduced an order parameter S in eqn. (20) repre-
senting this partial average. The molecular reorientational
motion is treated in the classical approximation and is
represented by a Markov operator Iy, representing
isotropic rotational diffusion (R), [eqn. (21)], where Dy is
rQML = Dy V:’QML @n
the isotropic rotational diffusion constant retated to the
rotational correlation time 1/tg = 6Dg. The fluctuation of
the distortion coordinate g(¢) of the distortion space (D)
is described by a Smoluchowski diffusion operator [

[eqn. (22)].
3*V(q) &
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In order to proceed, a basis set of operators spanning the
Liouville space is now introduced. A complete basis set is
constructed as a direct product basis set formed by the
eigenoperators (eigenfunctions) of the operators and func-
tions representing the subsystems (S), (R) and (D). The
electron spin part of this basis set is defined by eqn. (23),

£,0) =2 (5) " QEH) (ot n %) Sty S| (23)

where |S,m) is a Hilbert space eigenvector of the standard
electron vector operators S* and S;.

The reorientational space is spanned by the infinite set of
orthonormal Wigner rotation matrix elements [eqn. (24)].
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Finally, the complete set of Smoluchowsky eigenfunc-
tions is formed from the eigenfunctions of the harmonic
oscillator, i.e. the Hermite functions ¢;."° The complete
basis set of the Liouville space is thus formed as a direct
product of the electron spin operators, the reorientational
functions and the Smoluchowsky eigenfunctions [eqn.

23]
0(Z,0,L,M,i) = [2,0)®|L,M)®| i) (25)
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The dipole—dipole correlation function of eqn. (13) is
determined by expanding the dipole operators in terms of
the complete basis set, eqn. (26), where the coefficients of

SID3, Q) = Y, C,0,

OLS;:D%,n—p(QR) = 2 Duou (26)

1
the C and D vectors are given by eqn. (27).

C. = Tr {038, Dj,-,(2w)[0)}

D, = Tr, {O}0,5) D}, ,(Q)/0)} (27)

From eqns. (13), (26) and (27), the dipole—dipole cor-
relation function may be written as eqn. (28), where the

G2, () = 30 y3yiri

X DY Gt Gy [CrDle™ (28)
P q

Liouville supermatrix is denoted [M] = i O L, O written
in the operator representation. Eqn. (28) defines a sub-
matrix of dimension nine of the full and infinite correlation
matrix M determined by the Liouville operators of
eqn. (15).

We close this section by investigating the SBM approach
in the context of the model used in this paper. By “the BM
approach” we refer to the separation of the electron spin
system and the reorientational motion of the nuclear spin —
electron spin dipole—dipole interaction. The first assump-
tion we have to make in order to obtain the SBM equations
is that the Liouville superoperator L, governing the re-
laxation of the electron spin is independent of molecular
reorientation. Then the dipole—dipole correlation function
of eqn. (28) may be separated into a reorientational part
and an electron spin part, according to eqns. (29) and (30).
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The SBM approach [eqns. (29) and (30)] thus makes it
possible to express the nuclear spin — electron spin dipole-
dipole correlation functions in terms of pure electron spin—
lattice and spin-spin relaxation rates and a reorientation
correlation function.

Results and discussion

The numerical results are presented in this section in the
form of dispersion curves, where the reduced spectral den-
sity function K(w) is plotted as a function of the static
magnetic field B, or log(—wg tz). The reduced spectral
density is normalized according to eqn. (31). The value of

Kr?,? (noy)

2
Yo
(a) NY3rs' T

the reduced spectral density is thus restricted to the interval
[0,1]. K(w) is composed of a sum of spectral densities k, ,
forming a 3®3 submatrix of the Fourier-Laplace trans-
formed full correlation matrix. From section 2 it follows
that the reduced spectral density is given by eqn. (32),

K(awy) = €2Y)

Kw) = 20 2 Cogs') Gopp o) 4 K20(0) (32)
p 9

where the separate reduced spectral densities are given by
eqn. (33). The reduced spectral density represents an effec-

kPP () = [ (0]2n—pl(Lpl et [1,9)2.n—g)l0) e dr (33)
0

tive dipole—dipole correlation time normalized against the
reorientational correlation time. Thus, when K(w)=1
there is an effective dipole—dipole correlation time equal to
Tz In the following we focus on the dipole—dipole contribu-
tion to T;y, and leave out the spectral density K, ,, which is
equal to 1 over the whole parameter space, and the scalar
contribution, which is small.!!

The set of parameters that determine the reduced spec-
tral densities k, (w) is quite large. The ZFS interaction
parameters of eqn. (20) that are given in square brackets
[Ag,A,] refer to the static and the linear transient ZFS
interaction, respectively. The Smoluchowsky distortion dy-
namics has a characteristic correlation time tg, and the
tumbing of the whole paramagnetic ion-macromolecule
complex is characterized by the correlation time tz. The
correlation times are given in curly brackets, {tg,t5}. It
should be noted that no explicit characterizations of the
electron spin relaxation rates in terms of electron spin
relaxation times enter the parameter space.

Figs. 1(A) and 1(B) show the variation of the reduced
spectral densities k,, with the dimensionless variable
log (wgtg). The dotted lines representing the cross-spectral

2 Acta Chemica Scandinavica 45 (1991)

PROTON-ENHANCED RELAXATION

1.0 ~——r
(A)
(1.1)
[0}
£
£
=4
k<]
S
<
g
8
°
Q
o
=3
©
O
I '
-1.0 =
-1.8 -1.0 1.0 3.0
log (—wstgR)
1.0 — — —
Q
E
£
c
i)
s
[
8
L A
- (2
S I
©
7]
v L
_1.0 i e B i
-1.8 -1.0 1.0 3.0

log (—wsTg)

Fig. 1. k2P(w,) given for the Smoluchowsky distortion model (A)
[0.0, 10], {100, 1.0} and for the static ZFS model (B) with [0.5,
0.0] {100, 1.0}.

densities are denoted by the set of indices (a,B) (o =p+2,
B=q+2, p,g=—1,0,1), and the solid lines represent the
diagonal spectral densities (a,0). If we multiply the low-
field values by the corresponding weight factor of eqn. (32)
they add upp to 1. The low-field behaviour of the
Smoluchowsky distortion model [Fig. 1(A)] is exactly the
same as for the static ZFS model [Fig. 1(B)]. Only the (2.2)
diagonal spectral density changes when the stochastic fluc-
tuation of the ZFS interaction amplitude is introduced.
This term k,, reduces to 1,5/(T,s+1g) in the SBM approxi-
mation and strong narrowing condition. Fig. 1 reveals the’
importance of cross-correlation times of the dipole—dipole
coupling in the low-field region.

In Figs. 2(A) and 2(B) the dispersion curves for a set of
increasing static ZFS interaction values are shown. This
case represents a set of rigid low-symmetry complexes. In
Fig. 2(A) the x-axis shows the range of log(w.tg) values,
and in Fig. 2(B) the analogous Solomon-Bloembergen—
Morgan curve shows the range of the corresponding static
magnetic field (tg = 100 ps). The first dispersion is due to
wsTg > 1, but is modified to appear at higher fields as the
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Fig. 2. (A) The dispersion curves K,—,(w) for a set of static ZFS
interaction strengths. The parameter space is defined as {tg,ts}
(ps) and [A,,A,] (cm™). {100,1.0} (a) [0.001,0.0], (b) [0.05,0.0],
(c) [0.1,0.0], (d) [0.5,0.0]. The dispersion curves in (B)
correspond to the Bloembergen—Morgan approach.

ZFS interaction increases owing to the modification of the
electron spin energy levels. In Figs. 3(A) and 3(B) the
effect of the transient ZFS interaction strength is shown,
thus representing flexible complexes. Notice that the low-
field region is not modified compared to Fig. 1(A), but only
the high-field region. The SBM curves (B-curves) show a
qualitatively different behaviour. The low-field region is
considerably lower in these cases, indicating a more effec-
tive averaging of the nuclear spin — electron spin dipole—
dipole interaction owing to electron spin relaxation. The
striking features of the Smoluchowsky distortion model are
the high low-field values, corresponding to an effective
dipole-dipole correlation time equal to 1z. In Fig. 4 the
dispersion curves are shown for the case of both a static and
a transient ZFS interaction. The transient ZFS interaction
is held constant at 4 cm™!, and the static ZFS interaction is
increased from 1 to 2 cm™, which may be expected for an
increasing distortion of the paramagnetic complex. The
high-field and low-field regions are not sensitive to the
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changes; only the SBM w4ty = 1 dispersion is transferred to
higher fields. How can this behaviour be rationalized?
When the electron spin is fixed in the ZFS frame, no
averaging of the nuclear spin — electron spin dipole—dipole
interaction on a timescale faster than the molecular re-
orientation is present. In most experimental investigations,
as shown in Fig. 5 (taken from Ref. 19), the low-field
region indicates a fast averaging of the dipole-dipole inter-
action.”* The dispersion curve then shows a constant re-
gion at low field [K(w) << 1] and an increase of the effec-
tive dipole-dipole correlation time [K(w)— 1.0] at higher
field. The model presented is essentially determined by
eqns. (18) and (19). However, with small modifications
some of the restrictions may be lifted, and in Table 1 we
have summarized the changes.

First, we assumed that the principal frames of the ZFS
interaction and the diffusion tensor coincide. This restric-
tion is lifted in Fig. 6 and was further discussed in showing
that the smallest value in the low-field region is 0.25."
When the Zeeman energy becomes comparable with the
ZFS interaction, the electron spin relaxation introduces an

Reduced nuclear spin relaxation rate
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Fig. 3. The dispersion curves K; _;(w) for a set of transient ZFS
interactions with {100,1.0} (a) [0.0, 1.0], (b) [0.0, 2.0}, (c)
[0.0,4.0}, (d) [0.0,10.0].
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Table 1. Modifications of eqns. (17) and (18).

D5 [Qem(D] = diolPeul] = S Figs. 14
D5 [Qem()] = D3,,(0,90,0) Fig. 5
D2,[Qp(d) = 1 and 8P =0, a3”+ 0. Fig. 6
DinlQen(®] = 1 and 8P +#0, n#0 Fig. 7

averaging of the dipole-dipole coupling, and for higher
Zeeman interactions the electron spin motion slow down,
which is manifested by an increase in K(w). Secondly, we
assumed a cylindrical symmetry of the ZFS interaction; this
restriction is lifted in Fig. 7. However, the main character-
istics of the low-field limit still remain unchanged. In the
low-field limit we can rewrite the dipole—dipole correlation
function according to eqn. (34), where the electron spin

G0 = 2 2t (SpDh-o(0)D;,[Qus(?)]

X eirLL S’:l Dlzbn—p(Q)Dln'p(Q)} (34)

operators are now taken in the principal frame of the ZFS
interaction. The Liouville lattice operator is given by
eqn. (35).

Ly = Lzps + Lzeeman(t) —ilg —ilpg (35)

Here we have added a Markov operator describing the
motion of the principal frame of the ZFS relative to the
laboratory frame. Now, ignoring the Zeeman term, we can
separate the correlation function into two correlation func-
tions representing the overall motion of the complex and
the independent motion of the principal frame of the ZFS

[egn. (36)].

Reduced nuclear spin relaxation rate
o
o

‘-1.8 -1.0 0.0 1.0 2.0 3.0
log (wstq)

Fig. 6. The dispersion curves K, _,(w) for a set of static ZFS
interaction strengths where the tilt angle between the principal
frame of the ZFS interaction and the reorientational diffusion
frame is 90°. The parameter space is defined as {tz,ts} (ps)
and [Aq,A,] (em™). {100,1.0} (a) [0.001,0.0], (b) [0.05,0.0], (c)
[0.1,0.0}, (d) [0.5,0.0].
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Reduced nuclear spin relaxation rate
(=]
m

‘~1.8 -1.0 0.0 1.0 2.0 3.0

log (wstq)

Fig. 7. The dispersion curves K, (o) for a set of static ZFS
interaction strengths with a noncylindrical ZFS hamiltonian. The
parameter space is defined as {tz,ts} {100,1.0} (ps) and
[Aq,A4] (cm™Y). (a) [0.001,0.0], (b) [0.05,0.0], (c) [0.1,0.0],

(d) [0.5,0.0].

L :
GPP(1) = s e S trg (ST et S ) o) (36)

m

However, assuming isotropic pseudorotation for the mo-
tion of the principal frame ignores the fact that the complex
is of low symmetry, which should be reflected in the motion
of the principal frame. Qualitatively, the argument is il-
lustrative, and it gives a smallest value of the spectral
density K in the low-field region. The spectral density
results in the effective correlation time t.; and a low-field
value t5P/tz, where 10P is given by eqn. (37). Assuming a

T = (' + 1)~ (37)

pseudorotation of the ZFS interaction characterized by a
correlation time of 10 ps, the low-field value is larger
than 0.1.

Conclusions

The Smoluchowsky distortion model, together with the
reorientational motion, forms a model describing PER ef-
fects in low-symmetry complexes. In this paper it is shown
that the low-field regions of the NMRD curves are greatly
affected by cross-dipole spectral densities and that they are
also very sensitive to the orientational motion of the princi-
pal frame of the ZFS interaction relative to the rg-vector, a
motion not present in the Smoluchowsky model. An appro-
priate model describing the low-field region in heterogene-
ous systems and for low-symmetry complexes seems to
need restricted pseudorotation dynamics for the ZFS inter-
action in order to allow for a partial averaging of the
dipole-dipole coupling in the low-field region. The Bloem-
bergen-Morgan theory is not applicable to low-symmetry
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complexes. However, experimental results may be inter-
preted as if the motion of the principal frame of the ZFS
interaction is not strongly related to the symmetry of the
complex. Thus the ZFS principal frame is allowed to un-
dergo pseudoreorientation in some restrictive sense which
yields a partial averaging of the dipole—dipole coupling but
still reflects the low symmetry of the complex. The reorien-
tational motion of the complex modulating the rest of the
partially averaged ZFS interaction introduces minor chang-
es to the NMRD profile. If so, it may explain the qual-
itatively correct prediction of the NMRD curves derived
from the SBM theory. However, the problem merits fur-
ther investigations in order to obtain a satisfactory theory
to describe the experimental NMRD curves of low-symm-
etry complexes showing the characteristic constant and low
values"™? at low static fields.

Acknowledgement. We are grateful to the Swedish Natural
Science Research Council for financial support.

References

. Solomon, I. Phys. Rev. 99 (1955) 559.

2. Solomon, I. and Bloembergen, N. J. Chem. Phys. 25 (1956)
261.

3. Bloembergen, N. J. Chem. Phys. 27 (1957) 577; 595.

4. Bloembergen, N. and Morgan, L. O. J. Chem. Phys. 34 (1961)
842.

S. Lindner, U. Ann. Phys. (Leipzig) 16 (1965) 319.

6. Bertini, 1., Luchinat, C., Mancini, M. and Spina, G. J. Magn.
Reson. 59 (1984) 213.

7. Bertini, 1., Luchinat, C., Mancini, M. and Spina, G. In:
Gatteschi, D., Kahn, O. and Willett, R. D., Eds., Magneto-
Structural Correlations in Exchange Coupled Systems, Reidel,
Dordrecht 1985, p. 421.

8. Reuben, J. and Luz, Z. J. Phys. Chem. 80 (1976) 1357.

9. Benetis, N., Kowalewski, J., Nordenskiold, L., Wenner-
strom, H. and Westlund, P.-O. Mol. Phys. 50 (1983) 515.

10. Westlund, P.-O., Wennerstrom, H. and Benetis, N. Mol.
Phys. 61 (1987) 177.

11. Benetis, N., Kowalewski, J., Nordenskiold, L., Wenner-
strom, H. and Westlund, P.-O. Mol. Phys. 48 (1983) 329.

12. Benetis, N., Kowalewski, J., Nordenskiéld, L., Wenner-
strom, H. and Westlund, P.-O. J. Magn. Reson. 58 (1984) 261.

13. Westlund, P. O., Wennerstrom, H., Nordenskiold, L., Kowa-
lewski, J., Benetis, N. J. Magn. Reson. 59 (1984) 91.

14. Kowalewski, J., Larsson, P. T. and Westlund, P. O. J. Magn.
Reson. 74 (1987) 56.

15. Benetis, N. and Kowalewski, J. J. Magn. Reson. 65 (1985) 13.

16. Kowalewski, J., Nordenskiéld, L., Benetis, N. and Westlund,
P.-O. Progr. NMR Spectrosc. 17 (1985) 141.

17. Kowalewski, J., Benetis, N., Wennerstrom, H., Larsson, P. T.
and Westlund, P.-O. Proceedings of the International Sympo-
sium on Advanced Magnetic Resonance Techniques in Systems
of High Complexity, 1985, p. 197.

18. Westlund, P.-O. and Wennerstrom, H. Mol. Phys. Submitted.

19. Larsson, P. T. Lic. Diss., University of Stockholm, Stockholm
1988.

20. Banci, L., Bertini, I. and Luchinat, C. Inorg. Chim. Acta 100

(1985) 173.

Received May 3, 1990.



